Wallenpaupack Area School District

COURSE: AP CALCULUS

GRADE LEVEL: Grade 12
LENGTH OF COURSE: Both Semester I and II
Semester I - 90 Days/84 Minutes Per Day
Semester II - 45 Days/84 Minutes Per Day
TEXT: Calculus and Analytic Geometry, $7^{\text {th }}$ Edition, Part 1
PUBLISHER: Addison-Wesley Publishing Co.
COPYRIGHT: 1988

COURSE DESCRIPTION:

Advanced Placement Calculus is a rigorous course which parallels a college level calculus course. The student who enrolls is expected to prepare seriously to take an Advanced Placement examination in Calculus. Each student must assume responsibility for payment of the AP exam and be responsible for meeting the deadline.

CURRICULUM WRITING TEAM:

Betty Mang
Mel Vogler
Lynn Cunningham
Jim Ball

DATE OF REVISION:

2002

Wallenpaupack Area School District

Course: AP Calculus
Unit: Rate of Change of a Function

Grade Level: Grade 12
PA Standards: 2.1.11.A 2.8.11.K
2.2.11.C 2.8.11.L
2.2.11.F 2.8.11.O
2.5.11.A 2.8.11.Q
2.5.11.B 2.8.11.S
2.5.11.C 2.8.11.T
2.8.11.A 2.9.11.G
2.8.11.E 2.10.11.A

Topics:	Skills:
Coordinates for the plane Slope of a line Equations for lines Functions and graphs Absolute values Tangent lines and slopes of quadratic and cubic curves Slope of a curve; $y=f(x)$: derivatives Velocity and other rates of change Limits Infinity as a limit Continuity	Use slope to find additional points Find the angle of elevation Find the slope of a function Evaluate ΔX and ΔY Plot points and find slope between two points Determine if a quadrilateral is a parallelogram Write equations of lines using point-slope and slope y-intercept Determine equations of lines parallel or perpendicular to given a line and through given point Evaluate angle of inclination Identify and graph functions Determine the domain and range of algebraic and trigonometric functions Graph algebraic and trigonometric functions Evaluate composite functions Solve absolute value and inequality equations Define and find slopes of tangent and secant lines Write an equation of a line tangent to a curve at a given point Identify point(s) where a curve has a horizontal tangent Find the derivative of a function using the definition of derivative Compare and contrast function and its derivative Determine displacement, average velocity, and instantaneous velocity given a function (using definition of derivative)

Wallenpaupack Area School District

	Skills: (continued)
	Evaluate limits of algebraic and trigonometric functions graphically and algebraically Use and understand the sandwich theorem for limits Use and understand the combination theorem for limits Determine continuity of a function Know three criteria for continuity Know and use max-min theorem for continuous functions Know and use limit combination theorem for continuous functions
Activities:	Performance Assessments:
Textbook problem solving	Teacher produced tests and quizzes
Partner work	Class assignments
Board work	Homework
Utilizing the graphics calculator	Class participation
	Board work
	Teacher observation

Course: AP Calculus
Unit: Derivatives

Grade Level: Grade 12
PA Standards: 2.1.11.A 2.8.11.A
2.2.11.B 2.8.11.E
2.2.11.C 2.8.11.J
2.2.11.D 2.8.11.K
2.2.11.E 2.8.11.L
2.2.11.F 2.8.11.N
2.3.11.C 2.8.11.Q
2.4.11.A 2.8.11.S
2.5.11.B 2.8.11.T
2.5.11.C $\quad 2.10 .11 . A$

Topics:	Skills:
Polynomial functions and their derivatives Products, powers, and quotients Implicit differentiation and fractional powers Linear approximation and differentials The chain rule A brief review of trigonometry Derivatives of trigonometric functions Parametric equations Newton's method for approximating solutions of equations Derivative formulas in differential notation	Find the derivatives of algebraic functions and trigonometric functions by implicit and explicit methods Determine velocity and acceleration Write equations of tangent lines and normal lines to a curve at a given point Find the linearization of a function at a given point Estimate a given function using linearization Compare absolute change and relative change of a function Determine percent of error when using linearization Find the percentage of change of a function Apply linearization methods to real life problems Determine the derivatives of parametric equations using the chain rule Review graphing and evaluating trigonometric functions Find limits of trigonometric functions Graph parametric equations Use Newton's Method for approximating zeros to calculate the solution(s) of a function Use a graphics calculator to determine solution of a function Understand the relationship between derivatives and differential notation

Wallenpaupack Area School District

Activities:	Performance Assessments:
Textbook problem solving	Teacher produced tests and quizzes
Partner work	Class assignments
Board work	Homework
Utilizing the graphics calculator	Class participation
	Board work
	Teacher observation

Wallenpaupack Area School District

Course: AP Calculus
Unit: Applications of Derivatives

Grade Level: PA Standards:	Grade 12	
	2.1.11.A	2.8.11.D
	2.2.11. A	2.8.11.E
	2.2.11.B	2.8.11.J
	2.2.11. C	2.8.11.N
	2.2.11.D	2.8.11.0
	2.2.11.E	2.8.11.Q
	2.2.11.F	2.8.11.R
	2.3.11.A	2.8.11.S
	2.3.11. C	2.8.11. T
	2.4.11.B	2.9.11.G
	2.4.11. C	2.9.11.I
	2.4.11.E	2.10.11.A
	2.5.11.B	2.11.11.A
	2.5.11.C	2.11.11.B
	2.5.11.D	

Skills:

Curve sketching with first derivatives
Concavity and points of inflection
Asymptotes and symmetry
Maxima and minima: theory
Maxima and minima: problems
Related rates of change
The mean value theorem
Indeterminate forms and I'Hopital's rule Quadratic approximations and approximation errors: extending the mean value theorem

Sketch curves using the first and second derivatives, intercepts, asymptotes, domain, range and symmetry Determine the intervals of x-values on which the function is rising, falling, concave up, and concave down
Find the maximum and minimum values of a function
Determine the point(s) of inflection Investigate symmetry, intercepts, asymptotes, slope at the intercepts, and dominant terms of a function Determine if a function is odd or even Identify location for maximum and minimum values
Use second derivative test for local maxima and minima
Calculate the absolute extreme value(s) of a function
Apply maxima and minima theory in reallife situations
Determine related rates of changes in reallife situations
Apply the Mean Value Theorem and Rolle's Theorem
Evaluate limits using I'Hopital's Rule

Wallenpaupack Area School District

	Skills: (continued)
	Find the quadratic approximation for functions Evaluate the error when using the quadratic approximation for functions
Activities:	Performance Assessments:
Textbook problem solving	Teacher produced tests and quizzes Cartaser work assignments Board work Utilizing the graphics calculator
	Homework Class participation Board work Teacher observation

Wallenpaupack Area School District

Wallenpaupack Area School District

Course: AP Calculus
Unit: Applications of Definite Integrals

Grade Level: Grade 12
PA Standards: 2.1.11.A 2.5.11.B
2.2.11.A 2.5.11.C
2.2.11.F 2.5.11.D
2.3.11.A 2.9.11.G
2.4.11.B 2.9.11.H
2.4.11.C 2.9.11.I

Topics:	Skills:
The net change in position and distance traveled by a moving body Areas between curves Calculating volumes by slicing, volume of revolution Volumes modeled with washers and cylindrical shells Lengths of plane curves The area of a surface of revolution The average value of a function	Calculate the net change and distance traveled by a moving body Find the area between two curves Calculate the volume of solids of revolutions using washers and cylindrical shells Determine the length of plane curves and parametric curves Find the area of a surface of revolution of a given curve Evaluate the average value of a function
Activities:	Performance Assessments:
Textbook problem solving	Teacher produced tests and quizzes
Partner work	Class assignments
Board work	Homework
Utilizing the graphics calculator	Class participation
	Board work
	Teacher observation

Wallenpaupack Area School District

Wallenpaupack Area School District

Course: AP Calculus
Unit: Methods of Integration

Grade Level: Grade 12
PA Standards: 2.1.11.A

Topics:	Skills:
Basic integration formulas	Determine the value of indefinite and definite integrals using integration by parts Integration by parts Products and powers of trigonometric functions Even powers of sines and cosines
Evaluating definite and identities	
of products and powers of trigonometric	
functions	

Wallenpaupack Area School District

Course: AP Calculus
Unit: The Graphics Calculator

Grade Level: Grade 12
PA Standards: 2.2.11.F
2.5.11.C
2.8.11.A

Topics:	Skills:
Exercises using the graphics calculator	Use a graphics calculator as a tool for graphing functions, evaluating functions, finding the limit of functions, determining continuity of functions, finding the values of derivatives and finding the values of antiderivatives
Activities:	Performance Assessments:
Textbook problem solving	Teacher produced tests and quizzes Class assignments
Board work	Homework Class participation
Utilizing the graphics calculator	Board work Teacher observation

