Advanced Placement Chemistry

Course Syllabus, Including Laboratory Component and Evidence of Satisfying the A. P. Curricular Requirements

A. P. Chemistry at our high school is a 1.5 credit course. Prerequisites for this course are: *two credits in algebra *one credit in chemistry *one credit in physics (may be taken concurrently) Classes meet for 83 minutes each day for semester one (90 days), and 83 minutes every-other-day for semester two (45 days). Preparing for and taking the A.P. Chemistry Exam is a requirement for all students enrolled in this course. The course provides instruction in each of the five content areas outlined in the Course Description. The content areas addressed in each topic are listed in blue print at the end of each topic.

The student textbook is <u>Chemistry</u> by Zumdahl and Zumdahl, 6th edition, and the <u>Study Guide to Accompany Chemistry</u> by Zumdahl. A rigorous laboratory component is included, with college-level calculations, real-time data gathering with PASCO probes, the use of DataStudio graphing and analysis software, and written lab reports. A complete list of course resources is at the end of this Syllabus.

Topic	Starting Date	Laboratory Work
Review of chemistry 1 Topics	September	* Density Determinations
Matter: property and states	Weeks1 and 2	* Determination of the Empirical Formula of SnOx
Atomic theory & structure		
Quantum theory		
Periodic properties & trends		
Chemical bonding		
Chemical reactions & balancing equations		
Mole concept / Stoichiometry		
Descriptive chemistry		
Content Areas: Structure of Matter		
Chemical calculations	and mathematical fo	ormulation of chemical principles

Topic	Starting Date	Laboratory Work
Types of Chemical Reactions Reaction Prediction Weekly equation set from A.P. Exam	September Weeks 3 and 4 October to April (weekly)	* Titration of an acid and a Base (PASCO probes)* Types of Chemical Reactions
Content Areas: Chemical Reactions Descriptive Chemistry		
Oxidation-Reduction Reactions and Electrochemistry Redox reactions Balancing oxidation-reduction reactions Galvanic Cells Cell potential, electrical work, free energy Dependence of cell potential on concentrat Corrosion, Electrolysis	October Week 1	* Determination of Iron by Redox Titration * The Potential of Electrochemical Cells (PASCO)
Content Areas: Chemical Reactions Chemical calculations	and mathematical form	ulation of chemical principles
Chemical Bonding and Molecular Geometry Types of bonds Bond polarity and dipole moments Lewis structures	October Weeks 2 and 3	 * Molecular Model Building * Determination of Caffeine in Beverages by HPLC (Science in Motion (SIM) Lab, equipment borrowed from a local university)
Octet rule exceptions, Resonance VSEPR model and molecular shape Hybridization, Molecular orbital model Homonuclear and heteronuclear diatomics Content Areas: Structure of Matter		
Descriptive Chemistry		

Торіс	Starting Date	Laboratory Work
Gases Pressure Gas laws:Boyle's, Charles', Avogadro Gay-Lussac's combined and ideal Gas stoichiometry Dalton's law of partial pressures Kinetic molecular theory of gases Effusion and diffusion Real gases, Atmospheric gases	October, week 4 November, week 1 's,	 * Oxygen and Hydrogen Preparation * Molar Volume of a Gas * Evaluation of the Gas Law Constant * Percentage of Oxygen in Air * Molar Mass of Butane * (Diffusion of gases) Graham's Law of Effusion
Content Areas: States of Matter Chemical calculation Descriptive Chemist		ulation of chemical principles
	November	* Enthalpy of a Chemical Reaction
Thermochemistry/ Thermodynamics Enthalpy equations, laws, calculations Calorimetry, Hess's Law Standard enthalphies of formation Enthalphy equations and calculations i	Weeks 2 and 3	Hess's Law (PASCO probes) * Specific Heat/ Temperature of a Bunsen Burner Flame * Heat of combustion / Heat of Solidification

Content Areas: States of Matter, Descriptive Chemistry, Structure of Matter

Liquids, Solids, Metal bonds Molecular and ionic solids

Vapor pressure curves, Phase diagrams

Topic	Starting Date	Laboratory Work
Solutions Molarity and molality Solubility factors, Ideal and nonideal solut Colligative properties Boiling point elevation and freezing point Colloids		 * The Solubility of a Salt * Molar Mass by Freezing Point Depression (SIM lab) * Spectrophotometric Analysis of Commercial Aspirin using Beers' Law
Content Areas: Chemical calculations Structure of Matter	and mathematical for	rmulation of chemical principles
Nuclear Chemistry Balancing nuclear equations Nuclear transformations in equations Nuclear stability Radioactive decay and kinetics	January Week 1	* Exponential Decay (Kinetics) / Geiger Counter
Content Areas: Structure of Matter Chemical calculations	and mathematical for	rmulation of chemical principles
Kinetics	January Weeks 2 and 3	* Iodine Clock Reaction * Rates of Chemical Reactions

Торіс	Starting Date	Laboratory Work
Equilibrium Equilibrium constant Equilibrium and pressure Heterogeneous and homogeneous equilibr Equilibrium problems and calculations Le Châtelier's principle	January, week 4 February, week 1 ia	 * Determination of an Equilibrium Constant (Iron (III) and SCN⁻ by Spectrophotometry) * Stresses Applied to an Equilibrium System (Le Châtelier's Principle)
Content Areas: Chemical Reactions Chemical calculations	and mathematical for	rmulation of chemical principles
Acid- Base Equilibria Arrhenius, Bronsted-Lowry, Lewis pH scale and calculations Polyprotic acids Acid-base properties of salts Acid-base problems using pH, pOH, [H+] Buffered solutions and buffering capacity Common ion effect Titrations and pH curves, Acid-base indic		 * Titration of a Diprotic or Triprotic Acid (PASCO) * Ka Determination * Determination of Calcium in Calcium Supplements
Content Areas: Chemical Reactions Chemical calculations	and mathematical fo	rmulation of chemical principles
Solubility Equilibria Solubility & Solubility Product (K _{sp}) Precipitation and qualitative analysis	February, week 4 March, week 1	* K _{sp} of Ca(OH) ₂
Content Areas: Chemical Reactions Chemical calculations	and mathematical for	rmulation of chemical principles

Topic		Starting Date	Laboratory Work	
Descriptive Chemistry Zumdahl Chapters 19, 20, 21		October - April Independent Study Unit		
Content Areas:	Descriptive Chemistry	7		
aromatic h aldehydes,	enes, alkynes, alkadienes, ydrocarbonds, alcohols, ketones, and amines e, Isomers, Polymers	March Weeks 2 and 3	 * Synthesis of Aspirin (SIM lab) * Chromatography of plant extracts (SIM lab) 	
Content Areas:	States of Matter Chemical Reactions Structure of Matter			
Coordination Chemis	stry	March Week 4	* Coordination compounds (Copper II)	
Content Areas:	Chemical Reactions Structure of Matter			
Review for A.P. Che	emistry Exam	April (entire month) May (until exam)	 * Qualitative Analysis - Cations of groups I, II, III, - Anions * "Unknown" Determination by Qualitative Analysis 	

Course Text, Laboratory Manual, and Additional Resources

Student Textbook:

Zumdahl, Steven S. and Susan A. Zumdahl. *Chemistry*, 6th edition. New York: Houghton-Mifflin, 2003.

Student Study Guide:

Kelter, Paul B. *Student Study Guide to accompany Zumdahl's Chemistry, 6th Edition*. New York: Houghton-Mifflin, 2003.

Laboratory Resources:

Labs come from a variety of sources, but most are from these two college-level laboratory manuals:

Hall, James F. Experimental Chemistry. A Laboratory Manual to accompany Zumdahl's Chemistry, 6th Edition. New York: Houghton-Mifflin, 2003.

Weiss, Gerald S. and Robert K. Wismer and Thomas G. Greco. Experiments in General Chemistry: A Laboratory Program to accompany Petrucci's General Chemistry. New York: MacMillan Publishing Company, 1985.

Reference Resources:

Lide, David R., ed. CRC Handbook of Chemistry and Physics, 79th Edition, Boca Raton, Florida: CRC Press, 1998.

Petrucci, Ralph H. *General Chemistry*, 5th Edition. New York: Macmillan Publishing Company, 1989.

Budavari, Susan., ed. The Merck Index: An Encyclopedia of Chemicals, Drugs, and Biologicals, 11th Edition. Rahway, N.J.: Merck & Co., Inc., 1989.

Laboratory Software and Sensors:

PASCO Scientific Laboratory Data Collection System: Passport (digital probeware which connects to our networked PC's) ScienceWorkshop (black interface boxes) DataStudio Softare (data collection and data analysis software) PASCO Scientific, Roseville, Ca. 95747